Recognizing Daily Activities from First-person
Videos with Multi-task Clustering

Yan Yan!, Elisa Ricci®3, Gaowen Liu', Nicu Sebe!

! Dept. of Information Engineering and Computer Science, University of Trento, Italy
2 Fondazione Bruno Kessler, Ttaly
3Dept. of Engineering, University of Perugia, Italy

Abstract. The widespread adoption of low-cost wearable devices re-
quires novel paradigms for analysing human behaviour. In particular,
when focusing on first-person cameras continuously recording several
hours of the users life, the task of activity recognition is especially chal-
lenging. As a huge amount of unlabeled data is automatically generated
in this scenario, despite recent notable attempts, more scalable algo-
rithms and more effective feature representations are required. In this
paper, we address the problem of everyday activity recognition from vi-
sual data gathered from a wearable camera proposing a novel multi-task
learning framework. We argue that, even if label information is not pro-
vided, we can take advantage of the fact that the tasks of recognizing
activities of daily life of multiple individuals are related, i.e. typically
people tend to perform the same actions in the same environment (e.g.
people at home in the morning typically have breakfast and brush their
teeth). To exploit this information we propose a novel multi-task clus-
tering approach. With our method, rather than clustering data from
different users separately, we look for data partitions which are similar
among related tasks. Thorough experiments on two publicly available
first-person vision datasets demonstrate that the proposed approach con-
sistently and significantly outperforms several state-of-the-art methods.

1 Introduction

Human behaviour analysis is an important research area in computer vision. Au-
tomatically understanding what people do by analyzing visual streams recorded
from surveillance cameras is a challenging task and implies recognizing the ac-
tivities of the people of interest, the environment where they operate, the other
people with whom they interact, the objects they manipulate and even their
future intentions. While many progresses have been made in this area, recent
works [1] have demonstrated as the traditional “third-person” view perspective
(i.e. employing fixed cameras mounted all around in the user’s environment)
may be insufficient for understanding people activities and intentions and that
wearable cameras can provide an alternative or complementary source of infor-
mation. Wearable cameras can be employed in many different applications, such
as in driver’s assistance systems, for monitoring assembly operations in manu-
facturing, in ambient assisted living and, more recently, in the context of the so
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Fig. 1. Overview of our proposed multi-task clustering approach for First Person Vision
activity recognition (Figure is best viewed in color and zoom).

called “life-logging” [2,3] (i.e. where a first-person camera continuously records
a whole day of its wearer life).

In this paper, we focus specifically on everyday activity recognition from a
“first-person” vision (FPV) perspective. This problem poses several challenges.
With wearable cameras typically several hours of videos are recorded. This gen-
erates a large amount of data for which labels are not available as the annotation
would require a massive human effort. Thus, for accurate recognition, algorithms
which are both scalable and able to operate in an unsupervised setting are re-
quired. Moreover, designing effective visual features representations in this un-
constrained FPV scenario is much more challenging than in the case of fixed
cameras. In this paper, we propose to address the problem of everyday activity
recognition from unlabeled visual data within a multi-task learning framework.
When considering the tasks of recognizing activities of daily living of many indi-
viduals, it is natural to assume that these tasks are related. For example, people
working in an office environment tend to perform the same kind of activities
(e.g. typing on keyboard in front of a personal computer, reading and writing
documents). Similarly, most people when they wake up in the morning use to
drink coffee and brush their teeth. Thus, it is intuitive that, when performing
activity recognition, learning from data of all the individuals simultaneously is
advantageous with respect to considering each person separately. However, the
data distributions of single tasks can be different, since visual data correspond-
ing to different people may exhibit different features. In particular if there are
limited data for a single person, typical clustering methods may fail to discover
the correct clusters. In this case, using data from other people as an auxiliary
source of information can improve clustering results. However, simply combining
data from different people together and applying traditional clustering approach
does not necessarily increase accuracy, because the data distributions of single
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tasks can be different, violating i.i.d. assumptions. To address this problem, we
propose to invoke the novel paradigm of multi-task clustering (MTC). Specifi-
cally, we introduce two novel methods, derived by a common framework based
on the minimization of an objective function balancing two terms, one which
ensures the data of each single task to be clustered appropriately, the other
which enforces some coherence between the clustering results of related tasks.
We demonstrate the effectiveness of our approaches on two recent FPV datasets,
the FPV activity of daily living dataset [3] and the coupled ego-motion and eye-
motion dataset introduced in [4], comparing them with several single task and
multi-task learning methods. Fig. 1 depicts an overview of the proposed method.
The main contributions of this work are the following: (i) To our knowledge,
this paper is the first to address the problem of everyday activity recognition
within a MTC framework. While our framework can be used to analyze visual
streams recorded from fixed cameras, we tackle the more challenging scenario
of egocentric vision. (ii) The two proposed multi-task clustering approaches are
novel and two efficient algorithms are derived for solving the associated optimiza-
tion problems. (iii) Our experimental evaluation demonstrates that, indepen-
dently of the adopted feature representations, a multi-task learning framework
is greatly advantageous for FPV activity recognition with respect to traditional
single task approaches. (iv) The proposed MTC algorithms are general and can
be applied to many other computer vision and pattern recognition problems.

2 Related Works

Activity Recognition in Egocentric Videos. Analysing human behaviors
from data collected from wearable devices has received considerable attention
recently, not only in computer vision but also in other related research areas,
e.g. ubiquitous computing [5,6]. While many recent works are based on the use
of RFID tags or inertial sensors, systems based on first-person cameras still play
an important role being generally cheap and easy to deploy. Aghazadeh et al.
[7] considered the problem of discovering anomalous events analysing the video
stream captured from a small video camera attached to a person’s chest. In [2]
a summarization approach targeted to egocentric videos is presented. Fathi et
al. [8] introduced a method for individuating social interactions in first-person
videos collected during social events. Some recent works have faced the multiple
challenges of recognizing complex activities of everyday life from an egocentric
perspective in different scenarios (e.g. kitchen, office, home) [3,4,9,10]. In [3]
the authors demonstrated the importance of using features based on object de-
tectors’ output in the challenging unconstrained scenario of everyday at home
activity recognition. In [9] RGB-D sensors are employed for fine-grained recogni-
tion of kitchen activities. In [4] the task of recognizing egocentric activities in an
office environment is considered and motion descriptors extracted from an out-
side looking camera are used jointly with features modeling the eye movements
of the wearer captured by an inside looking camera. In [10] activity recognition
in a kitchen scenario (multiple subjects preparing different recipes) is considered.
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A codebook learning framework is proposed in order to alleviate the problem of
the large within-class data variability due to the different execution styles and
speed among different subjects.

In this paper, we address the problem of analysing activities of daily living

under the perspective of multi-task learning. Multi-task learning methods have
been previously investigated in the context of visual-based activity recognition
from fixed cameras and in a supervised setting [11-13]. In this paper, we consider
the more challenging scenario where no annotated data are provided, which is
typical when analyzing visual streams from wearable cameras.
Multi-task Learning. Recently multi-task learning (MTL) approaches [14]
have demonstrated their effectiveness in several applications in computer vision,
such as object detection [15], indoor localization [16], face verification [17] or
head pose estimation [18]. The idea of multi-task learning is simple: learning
from data of multiple related tasks simultaneously produces more accurate clas-
sification and regression models with respect to learning on every single task
independently. While many works have introduced supervised MTL approaches,
only few have considered an unsupervised setting [19-21], i.e. the scenario where
all the data are unlabeled and the aim is to predict the cluster labels in each
single task. Gu et al. [19] proposed to learn a subspace shared by all the tasks,
through which the knowledge of one task can be transferred to all the others.
Zhang et al. [21] introduced a MTC approach based on a pairwise agreement
term which encourages coherence among clustering results of multiple tasks. In
[20] the k-means algorithm is revised from a Bayesian nonparametric viewpoint
and extended to MTL.

In this paper, we propose two novel approaches for multi-task clustering.
The first one is inspired by the work in [21] but it is based on another objective
function and thus on a radically different optimization algorithm. Furthermore,
in the considered application, it provides superior accuracy with respect to [21].
Our second approach instead permits to easily integrate prior knowledge about
the tasks and the data of each task (e.g. temporal consistency among subsequent
video clips). Moreover, it relies on a convex optimization problem, thus avoids
the issues related to local minima of previous methods [19-21].

3 Multi-task Clustering for FPV Activity Recognition

In this paper, we focus on the problem of everyday activity recognition from
wearable cameras. More specifically, we consider several video clips collected by
a certain number of people involved in activities of daily living. No labeled data
are provided. We only assume that people perform about the same tasks, a very
reasonable assumption in the context of everyday activity analysis. Considering
each individual’s data as a specific task, we propose a MTC approach. To stress
the generality of our method, we apply it in two different scenarios: an office
environment where people are involved in typical activities such as browsing
the web or writing documents and a home environment where a chest mounted
camera records users’ activities such as opening a fridge or preparing tea. To
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Fig. 2. Feature extraction pipeline on the FPV office dataset. Some frames correspond-
ing to the actions read, browse and copy are shown together with the corresponding
optical flow features (top) and eye-gaze patterns depicted on the 2-D plane (bottom).
It is interesting to observe the different gaze patterns among these activities.

perform experiments we use two publicly available datasets, corresponding to
the scenarios described above: the FPV office dataset introduced in [4] and the
FPV activity of daily living dataset described in [3]. Both datasets contains
visual streams recorded from an outside-looking wearable camera while the office
dataset also has informations about eye movements acquired by an inside-looking
camera. Further details about the datasets are provided in the experimental
section. In the following we describe the adopted feature descriptors and the
proposed MTC framework.

3.1 Features Extraction in Egocentric Videos

Due to the large variability of visual data collected from wearable cameras there
exist no typical feature descriptors but different representations are adopted
dependently on the context. While in some situations extracting motion infor-
mation by computing optical flow vectors may suffice [4], in other cases motion
patterns may be too noisy and other kind of informations (e.g. presence/absence
of objects) must be exploited. In this paper we demonstrate that, independently
from the employed feature descriptors, MTC is an effective strategy for recog-
nizing everyday activities. We now describe the adopted feature representations
respectively for the considered office and home scenarios.

FPV office dataset. We follow [4] and extract features describing both the
eye motion (obtained by the inside-looking camera) and the head and body
motion (computed processing the outside camera’s stream). To calculate the eye
motion features, we consider the gaze coordinates provided in the dataset and
smooth them applying a median filter. Then the continuous wavelet transform
is adopted for saccade detection separately on the z and y motion components
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Fig. 3. FPV home dataset: frames depicting examples of the activities making cold
food/snack and making tea and the detected objects.

[22]. The resulting signals are quantized according to magnitude and direction
and are coded with a sequence of discrete symbols. To analyze the streams
of the output camera, for each frame the global optical flow is computed by
tracking corner points over consecutive frames and taking the mean flow in the
x and y directions. Then, the optical flow vectors are quantized according to
magnitude and direction with the same procedure adopted in the eye motion
case. The obtained sequences of symbols are then processed to get the final
video clip descriptors. We use a temporal sliding window approach to build a
n-gram dictionary over all the dataset. Then each video is divided into segments
corresponding to 15 seconds, each of them representing a video clip. For each
sequence of symbols associated to a video clip, a histogram over the dictionary
is computed. The final feature descriptor x; is calculated by considering some
statistics over the clip histogram and specifically computing the maximum, the
average, the variance, the number of unique n-grams, and the difference between
maximum and minimum count. Fig.2 shows the feature extraction pipeline.
FPV home dataset. We adopt the same object-centric approach proposed in
[3], i.e. to compute features for each video clip, we consider the output of several
object detectors. More specifically, we use the pre-segmented video clips and
the active object models in [3]. Active object models are introduced to exploit
the fact that objects look different when being interacted with (e.g. open and
close fridge). Therefore in [3] additional detectors are trained using a subset of
training images depicting object appearance when objects are used by people.
Fig.3 shows some frames associated to the activities making cold food/snack and
making tea: the output of the object detectors are depicted. To obtain object-
centric features for each frame a score for each object model and each location
is computed. Then the maximum scores of all the object models are used as
frame features. To compute the final clip descriptors x;, two approaches are
adopted: one based on “bag of features” (accumulating frame features over time)
and the other based on temporal pyramids. The temporal pyramid features are
obtained concatenating several histograms constructed with accumulation: the
first is a histogram over the full temporal extent of a video clip, the next is the
concatenation of two histograms obtained by temporally segmenting the video
into two parts, and so on.

3.2 Multi-task Clustering

We consider T related tasks corresponding to 1" different people. For each task
t, a set of data samples X' = {x{,x5,...,xy, } is available, where x} € IRY is the
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d-dimensional feature vector describing the j-th video clip and N; is the total
number of samples associated to the ¢-th task. In the following we denote with
(1)’ the transpose operator, N = Zthl N, is the total number of datapoints,
while X € RN*4 X = [X! X2 ... X7 is the data matrix obtained by
concatenating the task specific matrices X' = [x} xb ... x}y ] € RV*?% To
discover people activities, we want to segment the entire video clip into parts, i.e.
we want the data in the set X* to be grouped into K; clusters, where the number
of required partitions can be different in different tasks. This is reasonable in the
context of everyday activity recognition where people perform about the same
activities. Furthermore, as we assume the tasks to be related, we also require
that the resulting partitions are consistent with each other. This can be obtained
by defining the following optimization problem:

min ZAXt o) +Z Z R(©',©%) (1)
t=1 s=t+1
The problem (1) corresponds to the general problem of multi-task clustering,
where the term A(-) represents a reconstruction error which must be minimized
by learning the optimal task-specific model parameters @ (i.e. typically the
cluster centroids and the associated assignment matrix), while R(-) is an “agree-
ment” term imposing that, since the multiple tasks are related, also the associ-
ated model parameters should be similar. Under this framework, in this paper
we propose two different approaches for MTC which mainly differ for the defi-
nition of the “agreement term”. In the following subsections we present them in
detail.

Notation. In the following A;., A ; denote respectively the i-th row and the

j-th column of the matrix A.

3.3 Earth Mover’s Distance Multi-task Clustering

Given the task data matrices X*, we are interested in finding the centroid matri-
ces C! € IRX+*? and the cluster indicators matrices W* € IRN:*K: by solving
the following optimization problem:

Ks

Ky
o vezl?WZHXt WS> Y SIS e - e~ ¢ @)

t=1 s=t+1 i=1 j=1

s.t. iff;:zt:wg,- Vi, i Zf an] Vs, j
j=1 n=1 i=1

Ks

Ky
SN f =1 Vst

=1 j=1

The first term in the objective function is a relaxation of the traditional k-
means objective function for T' separated data sources. The second term, i.e.
the agreement term, is added to explore the relationships between clusters of
different data sources. It consists in the popular Earth Mover’s Distance (EMD)
[23] computed considering the signatures 7 and S obtained by clustering the data
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associated to task t and s separately, i.e. T = {(Cl{.,w}), ..., (C'}(t.,wth)},
wi = 25;1 an‘a and § = {( ?'7@0%)7 v ( %5.71055)}7 U}; = Zgil Wi In
practice C!. and Cj. are the cluster centroids and w;, w! denote the weights
associated to each cluster (reflecting somehow the number of datapoints in each
cluster). In practice the second term represents a sum of distances between two
distributions and minimizing it we impose the found partitions between pairs
of related tasks to be consistent. The variables fjt are flow variables as follows
from the definition of EMD as a transportation problem [23].

In (2) there are no constraints on the C; values. In this paper we define the
matrix C € RE*4 Cc =[CY...CTV, K = 23:1 K, and we impose that the
columns of C are a weighted sum of certain data points, i.e. C = PX where P =
blkdiag(P!,...,PT), P € IRE*YN TIn the following, for sake of simplicity and easy
interpretation, we consider only a two tasks problem. The extension to 1" tasks
is straightforward. Defining F = diag(f11 ... fx, x,), F € RF1K2XK1K2 and the
block diagonal matrix W = blkdiag(W!, W?2), W € RV*X  the optimization
problem (2) becomes:

AP, W, F)= min_[X - WPX|2 + Mr(MPXX'P'M'F) (3)
st. |Piji=1, Vi=1,....,. K Vt=1,2
N
tr(LF)=> Wy, Vi=1,.,K (4)
=1
tr(F) =1

where I; € RE1E2xE1K2 and M € IRE15K2XK are appropriately defined selec-
10---0

100 - -1 0 .-

oL 0 100 - 0 -1 .-

. . - 100 - 0o -+ —1
tion matrices as I; = |oo " o| M= |010" -1 0 .-
00--0 001 0 - -1

—_— —
1: K, Ki+1: K1+ Ko

Optimization. To solve the proposed problem (3), we first note that the opti-
mal solution of (3) can be found adopting an alternating optimization scheme,
i.e. optimizing separately (3) first with respect to P and then with respect to
W and F jointly. In both cases, a non-negative least square problem with con-
straints arises, for which standard solvers can be employed. However, due to
computational efficiency, in this paper we consider an approximation of (3), re-
placing the constraints (4) with tr(L;F) = e, where e € R*%2, ¢; = -, if
1 < Ky, e = 1% otherwise. This approximation implies that for each task the
same number of datapoints is assigned to all the clusters. In this way a more
efficient solver can be devised. Specifically, we adopt an alternating optimiza-
tion strategy, i.e. we optimize (3) separately with respect to F, W and P until
convergence. The algorithm for solving (3) is summarized in Algorithm 1.

Kernelization. Finally, to kernelize the proposed method we consider a feature
mapping ¢(-) and the associated kernel matrix Kx = ¢(X)¢(X)’. The objective
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Algorithm 1: Algorithm for solving (3).

Input: the data matrices X', X2, the numbers of clusters K1, K2, the parameter .
1: Initialize F as an identity matrix.

2: Initialize W > 0 with /3 normalized columns and P > 0 with /; normalized rows.

3: repeat
Given W*, P* compute F**! using a linear programming solver.
Given F*™1 P* compute W**! using a projected gradient method:
W = max (0, W* — a, Vw A(PF, WE FFHL)),
Given F*F™1 W**! compute P**! using a projected gradient method:
P*! = max(0, P* — a, Ve A(PF, WHHL FFHLY),
k+1

Pk
Normalize P by Pfj“ « i

until convergence;
Output: the optimized matrices W, P.

function of (3) is:

16(X) = WP $(X)|7. + Atr(MP¢(X)$(X) P'M'F) =
tr(Kx — 2KxP'W +WPKxP'W’' + AMPKxP'M'F)

The update rules of the kernelized version of our method can be easily derived
similarly to the linear case using Kx instead of X'X.

3.4 Convex Multi-task Clustering

Given the task specific training sets X, we propose to learn the sets of cluster

centroids II* = {=l,m}, .., wh }, ! € IR, by solving the following optimization
problem:

T N Ny T Ny N
min > O lIxi = wilE+ A D willwli—wGl) +Ae Y e d Y lIwi =53 (5)
Tiot=1 i=1 ij=1 t,s=1 i=1 j=1
>t s>t

In (5) the first two terms guarantees that the data of each task are clustered:
specifically with A\; = 0 the found centroids are equal to the datapoints while as
A¢ increases the number of different centroids w! reduces. The last term in (5)
instead imposes the found centroids to be similar if the tasks are related. The
relatedness between tasks is modeled by the parameter v, which can be set using
an appropriate measure between distributions. We consider the Maximum Mean
Discrepancy D(Xt, X¢) = || N% Zf\il H(xt)— NL Zfil #(x%)||? [24], we computed
it using a linear kernel and we set v, = e #PX "X with B being a user-defined
parameter (8 = 0.1 in our experiments). The parameters wfj are used to enforce
datapoints in the same task to be assigned to the same cluster and can be set
according to some a-priori knowledge or in a way such that the found partitions
structure reflects the density of the original data distributions.
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Algorithm 2: Algorithm for solving (5).

Input: The data matrix X, E, B, the parameter As.
1: Set Q = pE'E + 21 + 2)\>B.
2: Compute Cholesky factorization of the matrix Q.
3: for j=1:d do

repeat
Set b* = pE'q" — E'p" + 2X ;

Update 11 ;
Solve Q[IT ;]**! = b*

Update q using the operator STx(z) = sign(x) max(|z| — A, 0)
q"tt = STy, (E[IL;]* + S p*)

Update p
p"t = p" + p(E[IL;)" M — g™

until convergence;

Output: The final centroid matrix IT.

Optimization. To solve (5) we propose an algorithm based on the alternat-
ing direction method of multipliers (ADMM) [25]. We consider the matrix IT =

Y o2 ... IO7'), I € RY*?, obtained concatenating the task-specific matri-

ces IT" = [} 7} ... wly,|’. The problem (5) can be solved considering d separate

minimization subproblems (one for each column of X) as follows:

ming, ; [|X.; — IL;[|5 + [lafls + X2 BIL; |3 (6)
st. EIL;—q=0

where E is a block diagonal matrix defined as E = blkdiag(E', E2,... ET)
and E! € RIEI*Nt i a matrix with |&;] = w rows. Each row is a vector
of all zeros except in the position 7 where it has the value )\twfj and in the
position j where it has the value —/\twfj. Similarly the matrix B € RIBIXN,

where |B| = @7 imposes smoothness between the parameters of related
tasks. A row of the matrix B is a vector with all zeros except in the terms
corresponding to datapoints of the ¢-th task which are set to 75 and to the
terms corresponding to datapoints of the s-th task which are all set to —v,;. To

solve (6) we consider the associated lagrangian L,(II ;, q, p):
X5 =T, 3 + [lalls + A2 BIL; |3 + p'(EIL; — q) + g |ETL; — qlf;

with p being the vector of augmented Lagrangian multipliers and p being the
dual update step length. We devise an algorithm based on the ADMM where
three steps, corresponding to the update of the three variables II ;,q,p, are
performed. We summarize our approach in Algorithm 2.
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Fig. 4. FPV Office dataset. Temporal video segmentation on the second sequence of
subject-3 (13 minutes): comparison of different methods. (Best viewed in color).

4 Experimental Results

4.1 Datasets and Experimental Setup

The growing interest in the vision community towards novel approaches for FPV
analysis has led to the creation of several publicly available datasets [2—4, 8]. In
this paper we consider two of them, the FPV office dataset [4] and the FPV
home dataset [3].

FPV office dataset [4]. This dataset consists of five activities which frequently
occur in an office environment (reading a book, watching a video, copying text
from screen to screen, writing sentences on paper and browsing the internet).
Each action was performed by five subjects, who were instructed to execute each
task for about two minutes, while 30 seconds intervals of void class were placed
between target tasks. To provide a natural experimental setting, the void class
contains a wide variety of actions such as conversing, singing and random head
motions. The sequence of five actions was repeated twice to induce interclass
variance. The dataset consists of over two hours of data, where the video from
each subject is a continuous 25-30 minutes video.

FPV home dataset [3]. This dataset contains videos recorded from chest-
mounted cameras by 20 different users. The users perform 18 non scripted daily
activities in the house, like brushing teeth, washing dishes, or making tea. The
length of the videos is in the range of 20-60 minutes. The annotations about the
presence of 42 relevant objects (e.g. kettle, mugs, fridge) and about temporal
segmentation are also provided.

Setup. In the experiments, we compare our methods (EMD Multi-task Clus-
tering with linear and rbf kernel and Convex Multi-task Clustering denoted
as EMD-MTC, KEMD-MTC, CMTC respectively) with single task clustering
approaches, i.e. k-means (KM), kernel k-means (KKM), convex (CNMF) and
semi (SemiNMF) nonnegative matrix factorization [26]. We also consider recent
multi-task clustering algorithms such as the SemiEMD-MTC proposed in [21], its
kernel version KSemiEMD-MTC and the LS-MTC method in [19]. To evaluate
the clustering results, we adopt two metrics widely used in the literature: the
clustering accuracy (Acc) and the normalized mutual information (NMI). For
all the methods, except than for CMTC, 10 runs are performed corresponding
to different initializations conditions. The average results are shown. In CMTC
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Fig.5. FPV Office dataset. Confusion matrices using saccade+motion features ob-
tained with (left) KEMD-MTC and (right) CMTC methods.

the parameters \; are varied in order to obtain the desired number of clus-
ters. The value of the regularization parameters of our approaches (A for the
methods based on EMD regularization and Ay for CMTC) are set in the range
{0.01,0.1,1,10, 100}.

4.2 Results

FPV office dataset [4]. To conduct experiments on this dataset, we consider
T = 5 tasks, as the dataset contains videos corresponding to five people. As each
datapoint corresponds to a video clip in this dataset, we set the parameters wfj
in CMTC in order to enforce temporal consistency, i.e. for each task t, w;?j =1if
the features vectors x! and xé correspond to temporal adjacent video clips, oth-
erwise wj; = 0. Table 1 shows a comparison of the results associated to different
clustering methods based on different types of features (i.e. only saccade, only
motion and saccade+motion features). The last three rows correspond to meth-
ods which employ a non-linear kernel. From Table 1, several observations can be
made. First, independently on the adopted features representation, multi-task
clustering approaches always perform better than single task clustering meth-
ods (e.g. SemiEMD-MTC outperforms SemiNMF, EMD-MTC provide higher
accuracy than CNMF, a value of Ay greater than 0 leads to an improvement
in accuracy and NMI in CMTC). Confirming the findings reported in [4], we
also observe that combining motion and saccade features is advantageous with
respect to considering each single feature representation separately. Noticeably,
our methods are among the best performers, with KEMD-MTC reaching the
highest values of accuracy and NMI. This is somehow expected probably due to
both the use of kernels and the adoption of the multi-task learning paradigm.
Moreover, CMTC outperforms EMD-MTC by up to 4% which means that in-
corporating information about temporal consistency in the learning process is
beneficial. Furthermore, in this case the use of Maximum Mean Discrepancy
may capture better the relationship among tasks with respect to EMD. Fig.4
shows some qualitative temporal segmentation results on the second sequence
of subject-3. In this case for example the CMTC methods outperforms all the
other approaches and the effect of enforcing temporal consistency among clips
is evident. More qualitative results are provided in the demo video in our sup-
plementary material.
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Table 1. Clustering results on FPV office dataset: comparison of different methods
using saccade (S), motion (M) and saccade+motion (S+M) features.

Avg Acc Avg NMI
S M S+M S M S+M
KM 0.230 | 0.216| 0.257 | 0.029 | 0.021 | 0.045
SemiNMF [26] 0.320 | 0.303 | 0.358 | 0.149 | 0.131 | 0.166
SemiEMD-MTC [21] | 0.371 | 0.349 | 0.415 | 0.229 | 0.209 | 0.259
LSMTC [19] 0.286 | 0.261 | 0.335 | 0.043 | 0.031 | 0.071
CNMF [26] 0.328 | 0.301 | 0.357 | 0.152 | 0.139 | 0.170
EMD-MTC 0.389 | 0.363 | 0.442 | 0.239 | 0.221 | 0.273
CMTC (A2 = 0) 0.367 | 0.346 | 0.413 | 0.224 | 0.209 | 0.244
CMTC 0.425 | 0.401 | 0.468 | 0.259 | 0.238 | 0.305
KKM 0.345 | 0.316] 0.377 | 0.159 [ 0.152 | 0.185
KSemiEMD-MTC [21]| 0.387 | 0.359 | 0.432 | 0.241 | 0.228 | 0.287
KEMD-MTC 0.436 | 0.419 | 0.485 | 0.268 | 0.244 | 0.311
0.75 "KM 0.75 "KM
KKM KKM
07 SemiNMF [26] SemiNMF [26]
B SemiEMD-MTC [21] B SemiEMD-MTC [21]
065 1 KSemiEMD-MTC [21] & KSemiEMD-MTC [21]
B LSMTC [19] B LSMTC [19]
06 1 B CNMF [26] B CNMF [26]
¥ EMD-MTC B CEMD-MTC
035 17 KEMD-MTC KCEMD-MTC
0 B CMTC (A2=0) . B MTC(A2=0)
Bag of features " cmre Temporal pyramid features " M

Fig. 6. Comparison of different methods using (left) bag of features and (right) tem-
poral pyramid features on FPV home dataset. (Figure is best viewed in color).

Finally, Fig.5 shows the confusion matrices associated to our methods KEMD-
MTC and CMTC. Examining the matrix associated to KEMD-MTC, we observe
that the void, copy and write actions achieve relative high recognition accura-
cies compared with the video and browse actions. It is also interesting to note
that 25% and 17% of the video actions are recognized as browse actions for
KEMD-MTC and CMTC respectively, because of the similarity among motion
and eye-gaze patterns.

FPV home dataset [3]. In this dataset there are 18 different non scripted
activities. Since each person typically performs a small subset of the 18 activi-
ties, in our experiments we consider a series of three tasks problems, selecting
videos associated to three randomly chosen users but imposing the condition
that videos corresponding to the three users should have at least three activi-
ties in common. We perform 10 different runs. Fig.6 shows the results (average
accuracy) obtained with different clustering methods for both the bag-of-words
and the temporal pyramid features representation. In this series of experiments,
we did not cluster video clips of fixed size as in the office dataset, but we con-
sider the pre-segmented clips as provided with the dataset. In this scenario, it
does not make sense to set wf»j in CMTC to model temporal consistency. There-
fore, we set wf; = e~ i i el < 9 and wi; = 0 otherwise. This
is meant to enforce that the found partitions structure reflects the density of
the original data distributions. Analyzing the results in Fig.6, it is evident that
the MTC approaches outperforms their single task version (e.g. CMTC outper-
forms CMTC with Ay = 0, EMD-MTC outperforms CNMF, SemiEMD-MTC

Il Il
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Fig. 7. FPV home dataset: performance variations of EMD-MTC and KEMD-MTC at
different values of X using (left) bag of features and (right) temporal pyramid features.

outperforms SemiNMF). On the other hand, our algorithms based on EMD reg-
ularization and CMTC achieve a considerably higher accuracy with respect to
all the other methods. Finally, we also investigate the effect of different values
of the regularization parameter A in (3) on clustering performance. As shown
in Fig.7, independently from the adopted feature representation, the accuracy
values are sensitive to varying A. Fig.7 shows that choosing a value of A = 0.1
always lead to similar or superior performance with respect to adopting a single-
task clustering approach (A = 0). The value A = 0.1 correspond to the results
reported in Fig.6. This clearly confirms the advantage of using a MTC approach
for FPV analysis.

5 Conclusions

In this paper, we consider the problem of egocentric activity recognition from
unlabeled data within a multi-task clustering framework. T'wo novel MTC algo-
rithms have been proposed and evaluated extensively on two FPV datasets. Our
experimental results clearly demonstrate the advantage of sharing informations
among tasks over single tasks algorithms. Among our methods the approach
based on EMD regularization achieves the best performance when used in its
kernel version. On the other hand, our second algorithm is also effective as it
is based on a convex optimization problem and it is particularly useful when
one needs to incorporate some a-prior: knowledge. In this paper we consider
embedding information about temporal consistency but the CMTC method also
permits to integrate a-priori knowledge about task dependencies if available (e.g.
people performing the same activities in the same rooms correspond to more re-
lated tasks with respect to people operating in different rooms). This can be
easily done by defining an appropriate matrix B. Future works include exploit-
ing the suitability of the proposed algorithms for other vision applications, as
well as investigating how to improve our MTC methods (e.g. by detecting outlier
tasks).
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tive Ageing at Home.
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